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ABSTRACT 
 

This paper combines particle swarm optimization, grid search method and univariate method 

as a general optimization approach for any type of problems emphasizing on optimum 

design of steel frame structures. The new algorithm is denoted as  the GSU-PSO. This 

method attempts to decrease the search space and only searches the space near the optimum 

point. To achieve this aim, the whole search space is divided into a series of grids by 

applying the grid search method. By using a method derived from the univariate method, the 

variables of the best particle change values. Finally, by considering an interval adjustment to 

the variables and generating particles randomly in new intervals, the particle swarm 

optimization allows us to swiftly find the optimum solution. This method causes converge to 

the optimum solution more rapidly and with less number of analyses involved. The proposed 

GSU-PSO algorithm is tested on several steel frames from the literature. The algorithm is 

implemented by interfacing MATLAB mathematical software and SAP2000 structural 

analysis code. The results indicated that this method has a higher convergence speed towards 

the optimal solution compared to the conventional and some well-known meta-heuristic 

algorithms. In comparison to the PSO algorithm, the proposed method required around 45% 

of the total number of analyses recorded and improved marginally the accuracy of solutions. 
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1. INTRODUCTION 
 

Designing steel frames optimally is an important task for structural designers in today’s 

market with dwindling resources [1, 2]. The aim of steel frame design optimization is 

usually to minimize the frame weight [3-6] while being subject to drift constraints and code-

specified strength. The design variables are cross-sections of columns and beams chosen 

from standard cross-sections provided in the steel construction manual [4, 7]. Two general 

methods have been introduced for optimization problems: classical methods and heuristic 

approaches [8]. Classical optimization methods required gradient information of the 

objective function and constraints, where the final results depend on the initially selected 

points [1, 8]. 

Because of the drawbacks of classical method, researchers have devised more flexible 

and adaptable methods. Thus, meta-heuristic techniques have been developed by 

researchers. They do not require gradient information and possess better global search than 

the classical methods [8]. These methods are typically inspired by natural or physical 

phenomena such as genetic algorithms (GAs) [9], taboo search (TS) [10], ant colony (ACO) 

[11], particle swarm (PSO) [12], simulated annealing (SA) [13], harmony search (HS) [14] 

and big bang-big crunch (BB–BC [15]. Particle Swarm Optimization (PSO) is an important 

branch of meta-heuristic algorithms. Due to having simple concepts, few parameters, and 

being far distant from computational features, it has been extensively applied in structural 

optimization problems [16-22].  

In this paper, the implementation of an efficient hybrid algorithm based on particle 

swarm optimization, grid search method and univariate method, namely (GSU-PSO), is 

developed in order to improve the convergence speed of response of the PSO algorithm. 

The remainder of the paper is organized as follows: Section 2 presents the formulation of the 

steel frame design optimization problem according to AISC-LRFD [23] while Section 3 

describes the particle swarm optimization technique, grid search and univariate method. The 

steps of the GSU-PSO for optimization of frames are outlined in Sections 4 and 5 which 

compare optimization results with the standard PSO and other methods documented in the 

literature. Finally, the important conclusions of this study are summarized in Section 6. 

 

 

2. FRAME OPTIMIZATION PROBLEMS TO AISC-LRFD 
 

The aim of the optimum design of steel frames is to find a design with minimum weight. 

Total weight of the frame structure can be expressed as: 

 

              

  

   

 (1) 

 

where    is the material density of i-th member;    is the length of i-th member and nm is the 

number of members making up the frame. According to AISC-LRFD [23] code of practice, 

weight structure is subjected to several design constraints. These constraints contain:  
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Element stresses 
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Maximum lateral displacement 
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Inter-story displacements 
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where    and   
  are the stress and allowable stress in i-th member, respectively; R is the 

maximum drift index;    is the maximum lateral displacement; H is the height of the frame 

structure;    is the inter-story drift;    is the story height of the j-th floor;    is the total 

number of stories;    is the inter-story drift index permitted by the code of practice. 

According to the AISC [23], the allowed inter-story drift index is given as 1/300, and the 

LRFD interaction formula constraints (AISC, Equation H1-1a,b) are stated as: 
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where    is the required strength (tension or compression);    is the nominal axial strength 

(tension or compression);    is the resistance factor (  = 0.9 for tension,   = 0.85 for 

compression);     and     are the required flexural strengths in the x and y directions; 

respectively;     and     are the nominal flexural strengths in the x and y directions (for 

two-dimensional structures,     = 0); and   is the flexural resistance reduction factor (   

= 0.90). 

The effective length K to compute compression and Euler stresses factors are required. 

For beam and bracing members, K is taken equal to unity. For column members, K values 

are calculated by SAP2000 as follows: 

For unbraced members: 
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3. REVIEW OF PARTICLE SWARM OPTIMIZATION TECHNIQUE, GRID 

SEARCH METHOD AND UNIVARIATE SCHEME 
 

Since GSU-PSO methodology is based on PSO, grid search and univariate method, the 

specifications of these methods are briefly explained in this section.  

3.1 Particle swarm optimization 

Particle Swarm Optimization is a meta-heuristic technique. The basic idea was introduced 

by Eberhart, computer scientist, and Kennedy, an expert in the field of social psychology in 

1995 [12]. PSO algorithm is based on the production of a random population inspired by 

social behavior of animals such as bird flocking or fish schooling. The population is called a 

swarm and each member of the population is called a particle [12, 24, 25]. The basic idea of 

PSO is that each particle is moved in search space to find the optimum point, and the best 

situation, that is, the best individual position of the particle, in the various stages is stored; 

this value is called           at each step of the search. Particles exchange information about 

the situation to help each other to find the optimal situation: each particle uses a particle 

which has the best match (that is, the best global situation of the community         to 

adjust its pace). After finding the two best values, the particle updates its velocity and 

positions according to the following formula [12, 24]: 

 

   
      

                 
       

                 
       

     (8) 
   
     

       
                                                  (9) 

 

where   
   ,    

  and    
  are the velocity vector in the previous cycle, the velocity vector 

in the current cycle and the position vector of particle i in the current cycle along the d-th 

dimension, respectively.        
  is the best position in the history of particle i along the d-th 

dimension in cycle t.      
   is the best position in the history of all the particles along the 

d-th dimension in cycle t.    and    are acceleration coefficients.    and    are two 

independent random numbers uniformly distributed in the range of [0, 1]. ω is the inertia 

weight factor. 

 

3.2 Grid search method 

In this method a suitable grid in the design space is produced, then the objective function is 

evaluated at all the gird points, eventually the grid point corresponding to the lowest 

function value is selected. For example, if    and    are known as the lower and upper 

bounds on the i-th design variable, respectively, the rang (  ,   ) can be divided into      

equal parts so that the grid points along the    axis denote   
   
   

   
     

               . 

In Fig. 1 a grid in a two-dimensional design space with        is shown. The grid method 

requires a large number of functions calculated in most practical problems. For example, 

for a problem with 10 design variables (n=10) and        the number of grid points will be 

         . Therefore, the grid method can be used to find an approximate minimum for 

problems with a small number of design variables. Also, this method can be used to find a 

good starting point for one of the more efficient methods [26]. 
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Figure 1. Grid with pi=4 [26] 

 

3.3. Univariate method 

This method deals with only one variable change at a time and seeks to produce a sequence 

of improved approximations to the minimum point. By starting at a base point    in the i-th 

iteration, the values of n − 1 variables are fixed and the remaining variables are modified. 

Since only one variable is modified, the problem becomes a one-dimensional minimization 

problem. The first cycle is completed after all the n directions are searched sequentially, and 

then the entire process of continuous minimization is repeated. The procedure is continued 

until no further improvement is possible in the objective function in any of the n directions 

of a cycle. 

The univariate method will not converge rapidly to the optimum point as it has a 

tendency to oscillate with steadily decreasing progress toward the optimum. Hence, it will 

be better to stop the computations at some point near the optimum point [26]. 

 

 

4. HYBRID PSO, GRID SEARCH AND UNIVARIATE METHODS 
 

GSU-PSO algorithm is designed in two phases. In the first phase, by utilizing a method 

derived from the grid search method the feasible region is identified. Then the global 

optimum was approached using a method derived from the univariate method and, as long 

as the change in variables cause violation of constraints, the variables of the best design are 

changed one after another. To describe the methodology of the first phase, a flowchart is 

given in Fig. 2. In the second phase, global optimum is searched by using PSO with 

considering an interval close to the variables and generating random particles in new 

intervals. These concepts will be explained in detail in Sections 4.1 to 4.7. 

 

4.1 Sorting the catalog of design variables 

In order to minimize the weight of structure in case discrete sections such as W-Section are 

used, cross-sections should be sorted according to their surface. 
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4.2 Gridding search space 

In this section, an effective method is introduced to evaluate the search space. In this method 

it is assumed that the search space can be divided into a series of grids using the grid search 

method. In grid search method a suitable grid in the design space is produced and then 

objective function is evaluated at all gird points until the lowest function value is found. The 

disadvantage of this method is that if the number of variables increases, the number of grid 

points would decrease. In order to overcome these shortcomings, a survey was carried out. 

After gridding the search space, only the grid areas positioned on diagonal search space are 

searched which only produce one particle. Then, using a method derived from a univariate 

method the variables of the best particle were changed. Moreover, the volume of computing 

grid search is reduced. It will also lead to determining the near global optimum solution in a 

least amount of analyses required. Concepts expressed are shown in Fig. 3. 

 

4.3 Generating random design 

After gridding design space, only a random particle is produced in each of the diameter grids 

and the corresponding objective function is calculated.  

 

4.4 Choosing best design 

After only a random particle is produced in each of the diameter grids, the objective function 

is calculated. The particle with the lowest objective function without constraints violation is 

selected and the remaining particles are deleted. 

 

4.5 Determining the direction of desired movement for variables 

Two direction of movement for each variable is created: 1- direction of movement towards 

an increase in the value of the variable, 2- direction of movement towards a decrease in the 

value of the variable. 

To determine the desired direction for the first variable, objective function and violation of 

constraints are calculated for changes in the value of the first variable that are        and 

      .  ,   and   are equal to the best design obtained in Section 4.4, objective function 

and violation of constraint, respectively.   is equal to the length step change in the value of the 

variables. By comparing two values of the objective functions        and       , the 

direction in which the improved objective function with zero violation of constraints is 

selected. This process continues until the desired direction for all variables are determined. 

 

4.6 Changing the value of variables to improve the objective function 

After determining the desired direction for all variables, the values of variables are changed 

to improve the objective function. This section was inspired from univariate method. In this 

method, the first variable is changed and other variables are kept constant. Then objective 

function and violation of constraints are calculated. Although the objective function is 

improved and violation of constraint is zero, the value for the first variable is considered. 

Otherwise, the value of first variable is equal to the previous value. This process is repeated 

for all the variables until the change in the value of variable would cause violation of 
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constraint or the objective function would not further improve. 

 
Figure 2. Flowchart of the first phase of GSU-PSO 
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Figure 3. displaying two-dimensional design space 

 

4.7 Entering data into PSO algorithm 

To use PSO algorithm, a set of random numbers is generated. Using the variables obtained 

in Sections 4.6 and taking into consideration an interval close to the variables, the new 

domain of variables is generated to produce random numbers is generated. In this study, a 

novel interval was introduced, shown as        .    and    show the intervals used to 

decrease and increase the values, respectively. Generating random particles in new intervals, 

the particle swarm optimization allows finding the optimum solution in the new interval. 
 

4.7.1 Reforming interval of variables 

During the optimization process by PSO if variable reaches the end of the interval, the 

interval of variables will be increased. 

 

 

5. TEST PROBLEMS AND RESULTS 
 

The GSU-PSO optimization procedure developed in this work was tested by solving three 

weight minimization problems of steel frames: a 1-bay 10-story, a 3-bay 15-story frames and 

a 3-bay 24-story frames Optimization results were compared with literature to demonstrate 

the validity of the proposed approach. The optimization algorithms were coded in MATLAB 

while structural analysis was performed using the SAP2000 code. 

In this work, gridding obtained by dividing the total space into 10 divisions. Different 

functions by varying steps and intervals is investigated 

 

5.1 Design of 1-bay 10-story frame 

Fig. 4 shows the configuration and applied loads of 1-bay 10-story frame structure 
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consisting of 30 members. For this example, Pezeshk et al. [27] used GA. The same frame 

was also designed by Camp et al. [28] utilizing ant colony optimization (ACO), also by 

Degertekin [29] using Harmony search (HS), and by Kaveh and Talatahari [30] using 

improved ant colony optimization (IACO). 

Fabrication conditions requiring the same beam section to be used for every three 

consecutive stories starts from the foundation. Furthermore, the same column section must 

be used for every two consecutive stories. The beam element groups are chosen from all 267 

W-shaped sections of the AISC standard list, while the column element groups are limited to 

W12 and W14 sections (66 W-shapes). 

The frame was designed according to the AISC-LRFD specifications and uses inter-story 

drift constraints: inter story drift < story height/300. The modulus of elasticity of the 

material E is equal to 200 GPa and the yield stress                    MPa. 

 

 
Figure 4. Schematic of the 1-bay 10-story frame and loads acting on the structure 
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Fig. 5 compares the best convergence histories for the GSU-PSO and PSO algorithms. 

the optimum design of the frame is obtained after 2800 analyses using PSO, having the 

minimum weight of 315.43 KN. The optimum design for GSU-PSO is computed as 287.182 

KN within 1920 frame analyses. GSU-PSO algorithm with a 31% reduction in the number 

of analyses caused a 9 percent improvement in the optimal solution. It can be seen that the 

convergence speed at the beginning of the optimization process using algorithms GSU-PSO 

is much better than the conventional PSO. 

 

 
Figure 5. Comparison of the best-weight convergence curves of GSU-PSO and standard PSO 

obtained in the 1-bay 10-story frame problem 

 
Table 1: Optimization results obtained for the 1-bay 10-story frame problem. 

AISC W-shapes 

Element group no. Present 
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1 
Element group 

W33x118 W 33x118 W33x118 W30x108 W33x118 Beam 1-3S5 1 
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Optimization results are compared with the literature as listed in Table 1. In order to 

converge to a solution in the GSU-PSO algorithm, approximately 1920 frame analyses are 

required, which not only is less than the 3000 analyses required by the standard GA [27], but 

also less than the 8300, 3690 and 2500 analyses required by ACO [28], HS [29] and IACO 

[30], respectively. 

 

5.2 Design of 3-bay 15-story frame 

The topology and the service loading conditions for a three-bay fifteen-story frame 

consisting of 105 members are shown in Fig. 6. Displacement and AISC combined strength 

constraints were included as optimization constraints. Similar to the previous problem, the 

modulus of elasticity of the material E is equal to 200 GPa and the yield stress 

                   MPa. The beam and column element groups are chosen from all 267 W-

shaped sections of the AISC standard list. 

Fig. 7 compares the best convergence histories for the GSU-PSO and PSO algorithms. 

The optimum design of the frame is obtained after 5400 analyses by using PSO, having the 

minimum weight of 519.24 KN. The optimum design for GSU-PSO is calculated 396.749 

KN within 3070 frame analyses. GSU-PSO algorithm with a 43% reduction in the number 

of analyses also caused a 24 percent improvement in the optimal solution. It can be seen 

that the convergence speed at the beginning of the optimization process is much better 

using algorithms GSU-PSO than that using the conventional PSO. 
Optimization results are compared with the literature in Table 2. The GSU-PSO 

algorithm required 3070 frame analyses to converge a solution, which is significantly less 

than the 50000, 5800, 9900, 6000, 4050 and 3200 analyses required by PSO [31], HPSACO 

[31], HBB-BC [32], ICA [33], ES-DE [34] and ECBO [35], respectively. The best weight 

obtained by the GSU-PSO was recorded less than PSO [31], HPSACO [31], HBB-BC [32], 

ICA [33] and ES-DE [34].  

Fig. 8 shows the inter-story drift for each story of the frame design. The stress ratio for 

the three-bay 15-story frame design obtained by GSU-PSO is shown in Fig. 9. 

 

 
Figure 7. Comparison of the best-weight convergence curves of GSU-PSO and standard PSO 

obtained in the 3-bay 15-story frame problem 
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Figure 6. Schematic of the 3-bay 15-story frame and loads acting on the structure 
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Table 2: Optimization results obtained for the 3-bay 15-story frame problem. 

Present 

work 

AISC W-shapes Element 

group no. ECBO6 ES-DE5 ICA4 HBB-BC3 HPSACO2 PSO1 

W21 X 44 W14X99 W18 X 106 W24 X 117 W24 X 117 W21X 111 W33 X 118 1 

W12 X 106 W27X161 W36 X 150 W21 X 147 W21 X 132 W18 X 158 W33 X 263 2 

W27 X 161 W27X84 W12 X 79 W27 X 84 W12 X 96 W10 X 88 W24 X 76 3 

W27X 84 W24X104 W27 X 114 W27 X 114 W18 X 119 W30 X 116 W36 X 256 4 

W27 X 114 W14X61 W30 X 90 W14 X 74 W21 X 93 W21 X 83 W21 X 73 5 

W16 X 67 W30X90 W10 X 88 W18 X 86 W18 X 97 W24 X 103 W18 X 86 6 

W18 X 86 W14X48 W18 X 71 W12 X 96 W18 X 76 W21 X 55 W18 X 65 7 

W24 X 55 W14X61 W18 X 65 W24 X 68 W18 X 65 W27 X 114 W21 X 68 8 

W16 X 67 W14X30 W8 X 28 W10 X 39 W18 X 60 W10 X 33 W18 X 60 9 

W8 X 24 W12X40 W12 X 40 W12 X 40 W10 X 39 W18 X 46 W18 X 65 10 

W16 X 45 W21X44 W21 X 48 W21 X 44 W21 X 48 W21 X 44 W21 X 44 11 

396.749 386.933 415.06 417.466 434.54 426.36 496.68 
Weight 

(kN) 

3070 3200 4050 6000 9900 6800 50,000 

Number 

of 

analyses 

 

1- particle swarm optimization [31] 
2- heuristic particle swarm ant colony optimization[31] 

3- hybrid Big Bang–Big Crunch optimization[32] 

4- imperialist competitive algorithm[33] 

5- eagle strategy algorithm with differential evolution[34] 
6-enhanced colliding bodies optimization [35] 

 

  

Figure 8. Inter-story drift for the 3-bay 15-story 

frame design 

Figure 9. Stress ratios of the members for the 3-bay 

15-story frame 
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optimization (ACO). The same frame was also designed by Degertekin [28] utilizing 

Harmony search (HS), also by Safari [29] using modified multi-deme genetic algorithm 

(MMDGA), also by Mahmoud et al. [29] using enhanced harmony search (EHS) and by 

Kaveh et al. [30] using enhanced colliding bodies optimization (ECBO). 

The frame is designed following the LRFD specification and uses an inter-story drift 

displacement constraint. The material properties are a modulus of elasticity equal to E = 

205 GPa and a yield stress of              230.3 MPa. Fabrication conditions require the 

same beam section be used in the first and third bay on all floors except roof beams: 

therefore, there are only four groups of beams. Beginning from the foundation, the 

exterior columns are combined together into one group, the interior columns are 

combined together in another group over three consecutive stories. In summary, there 

are 16 groups of columns and 4 groups of beams for a total of 20 design variables. 

Cross-sections of beam elements can be chosen from all the 267 W-shapes while cross-

sections of column elements are limited to W14 sections (37 W-shapes). 

The optimum design of the frame is obtained after 11300 analyses using PSO, having 

the minimum weight of 997.132 KN. The optimum design for GSU-PSO is computed as 

906.21 KN within 6120 frame analyses. GSU-PSO algorithm with a 46% reduction in 

the number of analyses caused a 9 percent improvement in the optimal solution.  

Optimization results are compared with the literature in Table 3. The GSU-PSO 

algorithm required 6120 frame analyses to converge a solution, which is significantly 

less than the 15500, 14561, and 15360 analyses required by ACO [36], HS [29] and 

ECBO [35], respectively.  

Fig. 11 shows the inter-story drift for each story of the frame design. Fig. 12 

represents the stress ratios for the members of the 3-bay 24-story frame. The maximum 

value of the stress ratio is 82%. 

 

  
Figure 11. Inter-story drift for the 3-bay 24- story frame design 
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Figure 10. Schematic of the 3-bay 24-story frame and loads acting on the structure 
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Table 3. Optimization results obtained for the 3-bay 24-story frame problem 

Present 

work 

AISC W-shapes 

ECBO5 EHS4 MMDGA3 HS2 ACO1 Element 

group no. 
W30X90 W30 X 90 W10 X 19 W30 X 90 W30 X 90 W30 X 90 1 

W8X15 W6 X 15 W12 X 190 W8 X 15 W10 X 22 W8 X 18 2 

W21X48 W24 X 55 W6 X 8.5 W24 X 55 W18 X 40 W24 X 55 3 

W21X57 W6 X 8.5 W24 X 370 W10 X 15 W12 X 16 W8 X 21 4 

W14X132 W14 X 145 W14 X 132 W14 X 159 W14 X 176 W14 X 145 5 

W14X120 W14 X 132 W14 X 30 W14 X 132 W14 X 176 W14 X 132 6 

W14X99 W14 X 99 W14 X 99 W14 X 90 W14 X 132 W14 X 132 7 

W14X82 W14 X 90 W14 X 53 W14 X 90 W14 X 109 W14 X 132 8 

W14X74 W14 X 74 W14 X 74 W14 X 61 W14 X 82 W14 X 68 9 

W14X48 W14 X 38 W14 X 26 W14 X 48 W14 X 74 W14 X 53 10 

W14X34 W14 X 38 W14 X 68 W14 X 48 W14 X 34 W14 X 43 11 

W14X26 W14 X 22 W14 X 193 W14 X 22 W14 X 22 W14 X 43 12 

W14X109 W14 X 99 W14 X 145 W14 X 109 W14 X 145 W14 X 145 13 

W14X120 W14 X 99 W14 X 26 W14 X 99 W14 X 132 W14 X 145 14 

W14X109 W14 X 99 W14 X 26 W14 X 99 W14 X 109 W14 X 120 15 

W14X99 W14 X 82 W14 X 43 W14 X 74 W14 X 82 W14 X 90 16 

W14X74 W14 X 68 W14 X 26 W14 X 68 W14 X 61 W14 X 90 17 

W14X61 W14 X 61 W14 X 120 W14 X 53 W14 X 48 W14 X 61 18 

W14X34 W14 X 30 W14 X 426 W14 X 26 W14 X 30 W14 X 30 19 

W14X26 W14 X 22 W14 X 68 W14 X 22 W14 X 22 W14 X 26 20 

906.21 896.842 864,734 898.127 955.745 980.677 Weight (kN) 

6,120 15,360 1,259 4,750 14,651 15,500 
Number of 

analyses 

  

1- ant colony optimization [36] 

2 harmony search algorithm [29] 

3- modified multi-deme genetic algorithm [37] 

4- enhanced harmony search [38] 

5-enhanced colliding bodies optimization [35] 

 

 
Figure 12. Stress ratios of the members for the 3-bay 24-story frame 
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6. CONCLUSION 
 

PSO is a heuristic method inspired by social behavior of animals such as bird flocking or 

fish schooling. It is a multi-agent and randomized search technique which does not require 

an explicit relationship between the objective function and constraints, and it is not 

necessary for a given function to be derivable. Moreover, there are simple concepts, that is, 

few parameters to adjust. Despite all these advantages, the optimization time for solving 

frame structures is high. 

In this paper, in order to improve the convergence speed and quality of response of the 

PSO algorithm, the implementation of an efficient hybrid algorithm based on particle 

swarm optimization, grid search method and univariate method (GSU-PSO) is introduced. In 

this method, at phase 1, by applying the grid search method the whole search space is 

divided into a series of grids. The objective function is calculated with random-generated 

particles. By using a method derived from the univariate method the variables of the best 

particle are allowed to modify their values in a stepwise manner. At phase 2, particle swarm 

optimization found the optimum solution by considering an interval close to the variables 

and generating random particles in new intervals. 

The GSU-PSO method was tested on several steel frames from the literature. Major 

advancements of GSU-PSO explored in the present study may highlight the fact that, it is 

always fair to search for still better techniques to improve the results and yet not to claim 

that global optimum reached. The proposed technique, that introduces a hybrid method 

terminated by PSO, showed that the number of structural analyses for optimization could 

still be significantly reduced compared to other results reported in the literature while 

slightly modify the optimum solution. The technique could especially be recommended in 

some of the problems where there is no limit in the search space. It could even then narrow 

itself to the most required search space at the beginning of the procedure before optimization 

search takes place. The proposed technique by no means is a break through, but a search for 

better results without violating the constraints, could always be fruitfully challenging. 
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